Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)which limit cell wall digestibility and efficiency of cellulose conversion to bioethanol, can be influenced by belowground biotic and abiotic factors. Switchgrass (Panicum virgatum L.) is a leading lignocellulosic biofuel crop and forms strong belowground associations with arbuscular mycorrhizal fungi (AMF), is susceptible to belowground plant-parasitic nematodes (PPN), and when grown in monoculture generally requires nitrogen (N) fertilization. The main objectives of the study were to investigate the effects of N fertilizer and belowground organisms on lignin content and composition of switchgrass. Leaf, stem, and root tissues were evaluated separately to test whether these factors had varying belowground (local) or aboveground (systemic) effects on plants. These factors were manipulated in a field study in 2017 using biocide applications to reduce soil fungi and nematodes. Combined biocide application reduced p-hydroxyphenyl (H) unit abundance in the leaves by 14% and increased the syringyl:guaiacyl (S:G) ratio in stems by 2%. Application of fungicide alone increased stem syringyl (S) unit by 12.4% as compared with control plots, and 11.1% as compared with nematicide plots. Overall, fertilizer increased total stem lignin by 3%, stem S unit by 6.7%, and stem S:G ratio by 10%, whereas it reduced the amount of H-unit in the roots by 11%. While the effects of N fertilizer were more pronounced in this study, changes to soil organisms had similar magnitudes of effect for some measures of lignin, indicating that these belowground interactions may be important for growers to consider in the future.more » « less
-
Lignin depolymerization to aromatic monomers with high yields and selectivity is essential for the economic feasibility of many lignin-valorization strategies within integrated biorefining processes. Importantly, the quality and properties of the lignin source play an essential role in impacting the conversion chemistry, yet this relationship between lignin properties and lignin susceptibility to depolymerization is not well established. In this study, we quantitatively demonstrate how the detrimental effect of a pretreatment process on the properties of lignins, particularly β-O-4 content, limit high yields of aromatic monomers using three lignin depolymerization approaches: thioacidolysis, hydrogenolysis, and oxidation. Through pH-based fractionation of alkali-solubilized lignin from hybrid poplar, this study demonstrates that the properties of lignin, namely β-O-4 linkages, phenolic hydroxyl groups, molecular weight, and S/G ratios exhibit strong correlations with each other even after pretreatment. Furthermore, the differences in these properties lead to discernible trends in aromatic monomer yields using the three depolymerization techniques. Based on the interdependency of alkali lignin properties and its susceptibility to depolymerization, a model for the prediction of monomer yields was developed and validated for depolymerization by quantitative thioacidolysis. These results highlight the importance of the lignin properties for their suitability for an ether-cleaving depolymerization process, since the theoretical monomer yields grows as a second order function of the β-O-4 content. Therefore, this research encourages and provides a reference tool for future studies to identify new methods for lignin-first biomass pretreatment and lignin valorization that emphasize preservation of lignin qualities, apart from focusing on optimization of reaction conditions and catalyst selection.more » « less
An official website of the United States government
